finishing touches
This commit is contained in:
parent
5e4b08193a
commit
915908d137
@ -127,6 +127,7 @@ La siguiente tabla contiene los resultados de las pruebas de los 2 algoritmos me
|
|||||||
\newpage
|
\newpage
|
||||||
\section{Conclusiones}
|
\section{Conclusiones}
|
||||||
Para el desarrollo de este trabajo se nos pidió comparar dos algoritmos que ambos buscaban la menor distancia entre dos puntos. El primero fue el de fuerza bruta el cual consistía en un algoritmo ingenuo el cual buscaba comparando con 2 ciclos for, realizaba lo pedido de una de las peores formas costando muy caro en cuanto a tiempo a medida que aumentaban los puntos. Por otro lado, el segundo utilizaba un método recursivo en el cual se dividia a la mitad y cada una era comparada por separado, siendo este el mejor. A cantidades bajas de puntos la diferencia entre tiempos no era tan grande, pero a medida que incrementaba la curva de brute force despegaba hacía arriba. Finalmente, podemos terminar este trabajo de investigación con que para un mismo algoritmo pese a haber varias formas de programar una solución hay algunas que son completamente intratables todo depende de la cantidad de los datos de entrada.
|
Para el desarrollo de este trabajo se nos pidió comparar dos algoritmos que ambos buscaban la menor distancia entre dos puntos. El primero fue el de fuerza bruta el cual consistía en un algoritmo ingenuo el cual buscaba comparando con 2 ciclos for, realizaba lo pedido de una de las peores formas costando muy caro en cuanto a tiempo a medida que aumentaban los puntos. Por otro lado, el segundo utilizaba un método recursivo en el cual se dividia a la mitad y cada una era comparada por separado, siendo este el mejor. A cantidades bajas de puntos la diferencia entre tiempos no era tan grande, pero a medida que incrementaba la curva de brute force despegaba hacía arriba. Finalmente, podemos terminar este trabajo de investigación con que para un mismo algoritmo pese a haber varias formas de programar una solución hay algunas que son completamente intratables todo depende de la cantidad de los datos de entrada.
|
||||||
|
\par
|
||||||
Para encontrar el par de puntos más cercano la ecuación es\\$ d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $
|
Para encontrar el par de puntos más cercano la ecuación es\\$ d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} $
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
BIN
doc/graph.png
BIN
doc/graph.png
Binary file not shown.
Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 30 KiB |
Loading…
Reference in New Issue
Block a user