Finish informe #4

Merged
cromer merged 14 commits from informe into master 2018-12-14 20:53:15 -03:00
Showing only changes of commit aeb59bcd0a - Show all commits

View File

@ -82,32 +82,23 @@ Xavier Canales
\subsection{Análisis temporal}
\subsubsection{Brute Force}
\underline{Caso Promedio:} $ \Theta(n log n)) $ \\
Para el algoritmo de fuerza bruta el tiempo de respuesta es igual en todos los casos de n log n, esto se debe a que este donde este los puntos mas cercanos este recorrerá todo de igual forma. Esto es netamente debido a el cómo se programó las funciones con ciclos for anidados que son altamente costosos en tiempo.
\bigskip
Para el algoritmo de fuerza bruta el tiempo de respuesta es igual en todos los casos de $ n^2 $ , esto se debe a que este donde este los puntos mas cercanos este recorrerá todo de igual forma. Esto es netamente debido a el cómo se programó las funciones con ciclos for anidados que son altamente costosos en tiempo.\bigskip
\underline{Peor Caso:} $ O(n log n) $ \\
el peor caso es similar al caso promedio
\bigskip
El peor caso es similar al caso promedio.\bigskip
\underline{Mejor Caso:} $ \Omega(n log n)$ \\
el mejor caso es similar al caso promedio
\bigskip
El mejor caso es similar al caso promedio.\bigskip
\subsubsection{Divide and Conquer}
\underline{Caso Promedio:} $ \Theta(n log n)) $ \\
Para el algoritmo de dividir y conquistar se repite lo del analisis anterior que es la misma complejidad en todos los casos, de nuevo producto de que tiene que recorrer todo el mapa de puntos para llegar a saber cuales son los mas cercanos. Aquí es n log n, ya que este algoritmo divide el mapa para y compara las mitades separadamente lo cual es mucho mas eficiente que el caso anterior.
\bigskip
Para el algoritmo de dividir y conquistar se repite lo del análisis anterior que es la misma complejidad en todos los casos, de nuevo producto de que tiene que recorrer todo el mapa de puntos para llegar a saber cuales son los mas cercanos. Aquí es $ n log(n) $, ya que este algoritmo divide el mapa para y compara las mitades separadamente lo cual es mucho mas eficiente que el caso anterior.\bigskip
\underline{Peor Caso:} $ O(n log n) $ \\
el peor caso es similar al caso promedio
\bigskip
El peor caso es similar al caso promedio.\bigskip
\underline{Mejor Caso:} $ \Omega(n log n)$ \\
el mejor caso es similar al caso promedio
\bigskip
El mejor caso es similar al caso promedio.\bigskip
\newpage
\subsection{Datos}
@ -121,7 +112,7 @@ La siguiente tabla contiene los resultados de las pruebas de los 2 algoritmos me
\hline
\rule[-1ex]{0pt}{3.5ex} 1.000.000 & 15403.951[s] & 3[s] \\
\hline
\rule[-1ex]{0pt}{3.5ex} 5.000.000 & 372984[s] & 11.210[s] \\
\rule[-1ex]{0pt}{3.5ex} 5.000.000 & 372984[s] & 11.210[s] \\
\hline
\end{tabular}
\end{center}